Solution to Assignment 2

Supplementary Problems

Note the notations. These problems are valid in all dimensions. Hence we do not use (x, y) to denote a generic point as we do in \mathbb{R}^2 . Instead, here **x** or **p** are used to denote a generic point in \mathbb{R}^n .

- 1. Let S be a non-empty set in \mathbb{R}^n . Define its characteristic function χ_S to be $\chi_S(\mathbf{x}) = 1$ for $\mathbf{x} \in S$ and $\chi_S(\mathbf{x}) = 0$ otherwise. Prove the following identities:
 - (a) $\chi_{A\cup B} \leq \chi_A + \chi_B$.
 - (b) $\chi_{A\cup B} = \chi_A + \chi_B \chi_{A\cap B}$.
 - (c) $\chi_{A\cap B} = \chi_A \chi_B$.

Solution. (a) For $\mathbf{x} \in A \cup B, x$ must belong either to A or B. Hence $\chi_{A \cup B}(\mathbf{x}) = 1 \leq \chi_A(\mathbf{x}) + \chi_B(\mathbf{x})$. On the other hand, when \mathbf{x} does not belong to $A \cup B, \chi_{A \cup B}(\mathbf{x}) = 0$ and the inequality clearly holds.

(b) Exhaust all possible cases (1) $x \in A$ but not in B, (2) $x \in B$ but not in A (3) $x \in A \cap B$, and (4) x does not belong to A nor to B. In all these cases, the identity holds.

(c) When $x \in A \cap B$, both $\chi_A(x)$ and $\chi_B(x)$ are equal to 1, hence their product is equal to 1. When x does not belong to A or B, one of $\chi_A(x)$ and $\chi_B(x)$ must be 0, hence the product becomes 0.