## Solution to Assignment 2

## Supplementary Problems

Note the notations. These problems are valid in all dimensions. Hence we do not use $(x, y)$ to denote a generic point as we do in $\mathbb{R}^{2}$. Instead, here $\mathbf{x}$ or $\mathbf{p}$ are used to denote a generic point in $\mathbb{R}^{n}$.

1. Let $S$ be a non-empty set in $\mathbb{R}^{n}$. Define its characteristic function $\chi_{S}$ to be $\chi_{S}(\mathbf{x})=1$ for $\mathbf{x} \in S$ and $\chi_{S}(\mathbf{x})=0$ otherwise. Prove the following identities:
(a) $\chi_{A \cup B} \leq \chi_{A}+\chi_{B}$.
(b) $\chi_{A \cup B}=\chi_{A}+\chi_{B}-\chi_{A \cap B}$.
(c) $\chi_{A \cap B}=\chi_{A} \chi_{B}$.

Solution. (a) For $\mathbf{x} \in A \cup B, x$ must belong either to $A$ or $B$. Hence $\chi_{A \cup B}(\mathbf{x})=1 \leq$ $\chi_{A}(\mathbf{x})+\chi_{B}(\mathbf{x})$. On the other hand, when $\mathbf{x}$ does not belong to $A \cup B, \chi_{A \cup B}(\mathbf{x})=0$ and the inequality clearly holds.
(b) Exhaust all possible cases (1) $x \in A$ but not in $B$, (2) $x \in B$ but not in $A(3) x \in A \cap B$, and (4) $x$ does not belong to $A$ nor to $B$. In all these cases, the identity holds.
(c) When $x \in A \cap B$, both $\chi_{A}(x)$ and $\chi_{B}(x)$ are equal to 1 , hence their product is equal to 1 . When $x$ does not belong to $A$ or $B$, one of $\chi_{A}(x)$ and $\chi_{B}(x)$ must be 0 , hence the product becomes 0 .

